p-Type Cu₂O colloids optimized for photoelectrochemistry and electronics

Yury V. Kolen'ko,1 Xiao-Qing Bao,1 and Pedro Alpuim^{1,2}

1 – INL, Avenida Mestre José Veiga, 4715-330 Braga, Portugal 2 – Department of Physics, Universidade do Minho, 4715-057 Braga, Portugal yury.kolenko@inl.int

Owing to appropriate direct band energy of ca. 2.1 eV, high absorption coefficient and high hole mobility, the cuprite Cu_2O now stands as a competitive candidate as a photocatalyst for solar-assisted photoelectrochemical (PEC) H₂ evolution from water. Cu_2O is also a promising material for *p*-type metal-oxide semiconducting inks for solution-based printing of thin film transistors (TFTs), key components for microelectronics. Many examples of the synthesis of Cu_2O micro- and nanocolloids, which allow control over the particle size and shape, are known. A major synthetic challenge, however, is up-scaling the preparation of Cu_2O .

We use an automated synthesis system as a basis for the controlled large-scale surfactant-assisted synthesis of photoactive Cu₂O submicroparticles (Figure 1). Structure, morphological peculiarities, as well as enhanced solar H₂ evolution performance will be discussed. In particular, as a photocathode for PEC H₂ evolution, bare Cu₂O submicrocubes have a high onset potential of ca. 0.9 V versus the RHE at pH 1, which is significantly higher than the difference (~0.54 V) between the Fermi-level (0.48 V vs. SHE) of Cu₂O and the H⁺/H₂ redox potential (0.06 V vs. SHE). This indicates a fraction of the photocurrent is induced by the reduction of Cu₂O to Cu (0) according to the eq 1 [1]: $Cu_2O + 2e^- + 2H^+ \rightarrow Cu + H_2O$ (1)

In addition, nearly monodisperse Cu₂O nanocolloids were prepared in high yields through thermal decomposition protocol (Figure 2). Cu₂O thin films were further fabricated by spin-coating of the nanocolloids on a 200-nm SiO₂@Si wafer. Room temperature dark conductivity, σ_d , of the films, measured between parallel coplanar contacts, is thermally activated (Figure 3). σ_d is in the range 2.1 × 10⁻⁵ Ω^{-1} cm⁻¹ – 1.2 × 10⁻³ Ω^{-1} cm⁻¹, while the activation energy of σ_d , E_a , extracted from temperature-dependent σ_d measurements in the range 25 to 95 °C, decreases from 0.44 eV to 0.25 eV, respectively.

References

[1] A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, E. Thimsen. Nat. Mater., 10 (2011) 456.

Figures

Figure 1

Figure 2

Figure 3

